Substrate-selective and calcium-independent activation of CaMKII by α-actinin.
نویسندگان
چکیده
Protein-protein interactions are thought to modulate the efficiency and specificity of Ca(2+)/calmodulin (CaM)-dependent protein kinase II (CaMKII) signaling in specific subcellular compartments. Here we show that the F-actin-binding protein α-actinin targets CaMKIIα to F-actin in cells by binding to the CaMKII regulatory domain, mimicking CaM. The interaction with α-actinin is blocked by CaMKII autophosphorylation at Thr-306, but not by autophosphorylation at Thr-305, whereas autophosphorylation at either site blocks Ca(2+)/CaM binding. The binding of α-actinin to CaMKII is Ca(2+)-independent and activates the phosphorylation of a subset of substrates in vitro. In intact cells, α-actinin selectively stabilizes CaMKII association with GluN2B-containing glutamate receptors and enhances phosphorylation of Ser-1303 in GluN2B, but inhibits CaMKII phosphorylation of Ser-831 in glutamate receptor GluA1 subunits by competing for activation by Ca(2+)/CaM. These data show that Ca(2+)-independent binding of α-actinin to CaMKII differentially modulates the phosphorylation of physiological targets that play key roles in long-term synaptic plasticity.
منابع مشابه
The Cyclin-Dependent Kinase 5 Activators p35 and p39 Interact with the -Subunit of Ca /Calmodulin-Dependent Protein Kinase II and -Actinin-1 in a Calcium-Dependent Manner
Cyclin-dependent kinase 5 (Cdk5) is a critical regulator of neuronal migration in the developing CNS, and recent studies have revealed a role for Cdk5 in synaptogenesis and regulation of synaptic transmission. Deregulation of Cdk5 has been linked to the pathology of neurodegenerative diseases such as Alzheimer’s disease. Activation of Cdk5 requires its association with a regulatory subunit, and...
متن کاملModulation of vascular smooth muscle cell migration by calcium/ calmodulin-dependent protein kinase
Pfleiderer, Paul J., Katherine Kun Lu, Michael T. Crow, Rebecca S. Keller, and Harold A. Singer. Modulation of vascular smooth muscle cell migration by calcium/calmodulin-dependent protein kinase II2. Am J Physiol Cell Physiol 286: C1238–C1245, 2004. First published February 4, 2004; 10.1152/ajpcell.00536.2003.—Previous studies demonstrated a requirement for multifunctional Ca /calmodulin-depen...
متن کاملCaMKIIT287 and T305 regulate history-dependent increases in α agonist–induced vascular tone
CaMKII is a calcium and calmodulin-activated kinase that has been shown to regulate learning and memory in the brain, and contractility in blood vessels. Following Ca activation, CaMKII autophosphorylates, gaining a calcium-independent autonomous activity that reflects a molecular memory of having previously come into contact with calcium. The present study addresses whether the molecular memor...
متن کاملP26: Long-Term Potentiation: The Mechanisms of CaMKII in Lerarning and Memory
Long-term potentiation (LTP) is a form of activity dependent plasticity that induced by high-frequency stimulation or theta burst stimulation and results in synaptic transmission. Several Studies have been shown that LTP is one of the most important processes in the CNS that plays an important role in learning and memory formation. Ca2+/calmodulin-dependent protein kinase II (CaMKII) is a major...
متن کاملCalcium Elevation at Fertilization Coordinates Phosphorylation of XErp1/Emi2 by Plx1 and CaMK II to Release Metaphase Arrest by Cytostatic Factor
BACKGROUND Vertebrate oocytes are arrested at second meiotic metaphase by cytostatic factor (CSF) while awaiting fertilization. Accumulating evidence has suggested that inhibition of the anaphase-promoting complex/cyclosome (APC/C) is responsible for this arrest. Xenopus polo-like kinase 1 (Plx1) is required for activation of the APC/C at the metaphase-anaphase transition, and calcium elevation...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 287 19 شماره
صفحات -
تاریخ انتشار 2012